1,164 research outputs found

    Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer

    Get PDF
    Original article can be found at: http://www.atmos-chem-phys.net/10/issue10.html Copyright - the authors. Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified. The article and any associated published material is distributed under the Creative Commons Attribution 3.0 License.Aerosol particle size distributions were measured below and above a tropical rainforest canopy in Borneo, Malaysia, in June/July 2008 using the WIBS-3: a single particle dual channel fluorescence spectrometer. Material in the size range 0.8–20 μm was characterized according to optical equivalent diameter (DP), morphology and fluorescence at 310–400 nm and 400–600 nm following excitation at 280 nm and 370 nm respectively. Particles fluorescent after both excitations are likely to be fluorescent primary biological aerosol particles (FBAP). Measured FBAP number concentration (NFBAP) at both sites exhibited clear diurnal cycles. The largest variability was observed in the understorey, where NFBAP reached a minimum of 50–100 L−1 in late morning. In mid afternoon it exhibited strong transient fluctuations as large as 4000 L−1 that were followed by sustained concentrations of 1000–2500 L−1 that reduced steadily between midnight and sunrise. Above the canopy FBAP number ranged from 50–100 L−1 during the daytime to 200–400 L−1 at night but did not exhibit the transient enhancements seen in the understorey. The strong FBAP fluctuations were attributed to the release of fungal spores below the canopy and appeared to be linked to elevated relative humidity. The mean FBAP number fraction in the size range 0.8 μm<DP<20 μm was 55% in the understorey and 28% above canopy. A size mode at 2 μm<DP<4 μm appears at both sites and is primarily FBAP, which dominated the coarse (DP≥2.5 μm) number concentration at both sites, accounting for 75% in the understorey and 57% above the canopy. In contrast, the concentration of non-fluorescent particles (NNON) at both sites was typically 200–500 L−1, the majority of which occupied a size mode at 0.8<DP<1.5 μm. Enhanced understorey NNON was observed daily in mid-afternoon and also at midday on three occasions: the former coincided with the FBAP enhancements and measured approximately 10% of their magnitude; the latter occurred independently of the NFBAP diurnal cycle and comprised particles smaller than 2 μm. Particle diameter of 3–5 μm is consistent with smaller fungal spores, though absolute identification of biological species is not possible with the UV-LIF technique. Based on the measured FBAP and non-fluorescent particle abundances and their observed recovery times following rain showers, FBAP originated beneath the canopy while the non-fluorescent material was transported from further away. It is concluded that these separate sources contributed the majority of the aerosol measured by the WIBS-3 at both sites.Peer reviewe

    Macrophage transactivation for chemokine production identified as a negative regulator of granulomatous inflammation using agent-based modeling

    Get PDF
    Cellular activation in trans by interferons, cytokines and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and / or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani-infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation

    Post kala-azar dermal leishmaniasis: an unresolved mystery

    Get PDF
    Post kala-azar dermal leishmaniasis (PKDL), a cutaneous sequela of visceral leishmaniasis (VL), develops in some patients alongside but more commonly after apparent cure from VL. In view of the pivotal role of PKDL patients in the transmission of VL, here we review clinical, epidemiological, parasitological, and immunological perspectives of this disease, focusing on five hypotheses to explain the development of PKDL: (i) the role of antimonial drugs; (ii) UV-induced skin damage; (iii) reinfection; (iv) organ specific failure of memory T cell responses; and (v) genetic susceptibility of the host. This review will enable researchers and clinicians to explore the unresolved mystery of PKDL and provide a framework for future application of ‘omic’ approaches for the control and eventual elimination of VL

    Viloxazine, a Non-stimulant Norepinephrine Reuptake Inhibitor, for the Treatment of Attention Deficit Hyperactivity Disorder: A 3 Year Update.

    Get PDF
    Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in childhood. Current treatment options for ADHD include pharmacological treatment (stimulants, non-stimulants, anti-depressants, anti-psychotics), psychological treatment (behavioral therapy with or without parent training, cognitive training, neurofeedback), and complementary and alternative therapies (vitamin supplementation, exercise). Central nervous system (CNS) stimulants are the primary pharmacological therapy used in treatment; however, these stimulant drugs carry a high potential for abuse and severe psychological/physical dependence. Viloxazine, a non-stimulant medication without evidence of drug dependence, is a selective norepinephrine reuptake inhibitor that has historically been prescribed as an anti-depressant medication. The extended-release (ER) form was approved by the US Food and Drug Administration (FDA) in April 2021 for the treatment of ADHD in pediatric patients aged 6-17 years. Phase 2 and 3 randomized control trials have demonstrated significant efficacy of viloxazine in improving ADHD symptoms versus placebo. Related to its long-standing use as an antidepressant, the safety profile and pharmacokinetics of viloxazine are well understood. Viloxazine appears to be a suitable alternative to current standard-of-care pharmacotherapy for ADHD, but the further investigation remains to be done in comparing its efficacy to that of current treatments

    TNF signalling drives expansion of bone marrow CD4+ T cells responsible for HSC exhaustion in experimental visceral leishmaniasis

    Get PDF
    Visceral leishmaniasis is associated with significant changes in hematological function but the mechanisms underlying these changes are largely unknown. In contrast to naïve mice, where most long-term hematopoietic stem cells (LT-HSCs; LSK CD150+ CD34- CD48- cells) in bone marrow (BM) are quiescent, we found that during Leishmania donovani infection most LT-HSCs had entered cell cycle. Loss of quiescence correlated with a reduced self-renewal capacity and functional exhaustion, as measured by serial transfer. Quiescent LT-HSCs were maintained in infected RAG2 KO mice, but lost following adoptive transfer of IFNγ-sufficient but not IFNγ-deficient CD4+ T cells. Using mixed BM chimeras, we established that IFNγ and TNF signalling pathways converge at the level of CD4+ T cells. Critically, intrinsic TNF signalling is required for the expansion and/or differentiation of pathogenic IFNγ+CD4+ T cells that promote the irreversible loss of BM function. These finding provide new insights into the pathogenic potential of CD4+ T cells that target hematopoietic function in leishmaniasis and perhaps other infectious diseases where TNF expression and BM dysfunction also occur simultaneously

    IL-4 Mediated Resistance of BALB/c Mice to Visceral Leishmaniasis Is Independent of IL-4Rα Signaling via T Cells

    Get PDF
    Previous studies infecting global IL-4Rα-/-, IL-4-/-, and IL-13-/-mice on a BALB/c background with the visceralizing parasite Leishmania donovani have shown that the T helper 2 cytokines, IL-4, and IL-13, play influential but not completely overlapping roles in controlling primary infection. Subsequently, using macrophage/neutrophil-specific IL-4Rα deficient BALB/c mice, we demonstrated that macrophage/neutrophil unresponsiveness to IL-4 and IL-13 did not have a detrimental effect during L. donovani infection. Here we expand on these findings and show that CD4+ T cell-(Lckcre), as well as pan T cell-(iLckcre) specific IL-4Rα deficient mice, on a BALB/c background, unlike global IL-4Rα deficient mice, are also not adversely affected in terms of resistance to primary infection with L. donovani. Our analysis suggested only a transient and tissue specific impact on disease course due to lack of IL-4Rα on T cells, limited to a reduced hepatic parasite burden at day 30 post-infection. Consequently, the protective role(s) demonstrated for IL-4 and IL-13 during L. donovani infection are mediated by IL-4Rα-responsive cell(s) other than macrophages, neutrophils and T cells

    Leishmania braziliensis prostaglandin F2α synthase impacts host infection

    Get PDF
    BACKGROUND: Prostaglandins (PG) are lipid mediators derived from arachidonic acid metabolism. They are involved in cellular processes such as inflammation and tissue homeostasis. PG production is not restricted to multicellular organisms. Trypanosomatids also synthesize several metabolites of arachidonic acid. Nevertheless, their biological role in these early-branching parasites and their role in host-parasite interaction are not well elucidated. Prostaglandin F2α synthase (PGF2S) has been observed in the Leishmania braziliensis secreted proteome and in L. donovani extracellular vesicles. Furthermore, we previously reported a positive correlation between L. braziliensis PGF2S (LbrPGF2S) expression and pathogenicity in mice. METHODS: LbrPGF2S gene expression and PGF2α synthesis in promastigotes were detected and quantified by western blotting and EIA assay kit, respectively. To investigate LbrPGF2S localization in amastigotes during bone marrow-derived macrophage infection, parasites expressing mCherry-LbrPGF2S were generated and followed by time-lapse imaging for 48 h post-infection. PGF2S homolog sequences from Leishmania and humans were analyzed in silico using ClustalW on Geneious v6 and EMBOSS Needle. RESULTS: Leishmania braziliensis promastigotes synthesize prostaglandin F2α in the presence of arachidonic acid, with peak production in the stationary growth phase under heat stress. LbrPGF2S is a cytoplasmic protein enriched in the secretory site of the parasite cell body, the flagellar pocket. It is an enzyme constitutively expressed throughout promastigote development, but overexpression of LbrPGF2S leads to an increase of infectivity in vitro. The data suggest that LbrPGF2S may be released from intracellular amastigotes into the cytoplasm of bone marrow-derived macrophages over a 48-hour infection period, using time-lapse microscopy and mCherry-PGF2S (mChPGF2S)-expressing parasites. CONCLUSIONS: LbrPGF2S, a parasite-derived protein, is targeted to the host cell cytoplasm. The putative transfer of this enzyme, involved in pro-inflammatory lipid mediator synthesis, to the host cell suggests a potential role in host-parasite interaction and may partially explain the increased pathogenicity associated with overexpression of LbrPGF2S in L. braziliensis. Our data provide valuable insights to help understand the importance of parasite-derived lipid mediators in pathogenesis

    Locally Up-regulated Lymphotoxin α, Not Systemic Tumor Necrosis Factor α, Is the Principle Mediator of Murine Cerebral Malaria

    Get PDF
    Cerebral malaria (CM) causes death in children and nonimmune adults. TNF-α has been thought to play a key role in the development of CM. In contrast, the role of the related cyto-kine lymphotoxin α (LTα) in CM has been overlooked. Here we show that LTα, not TNFα, is the principal mediator of murine CM. Mice deficient in TNFα (B6.TNFα−/−) were as susceptible to CM caused by Plasmodium berghei (ANKA) as C57BL/6 mice, and died 6 to 8 d after infection after developing neurological signs of CM, associated with perivascular brain hemorrhage. Significantly, the development of CM in B6.TNFα−/− mice was not associated with increased intracellular adhesion molecule (ICAM)-1 expression on cerebral vasculature and the intraluminal accumulation of complement receptor 3 (CR3)-positive leukocytes was moderate. In contrast, mice deficient in LTα (B6.LTα−/−) were completely resistant to CM and died 11 to 14 d after infection with severe anemia and hyperparasitemia. No difference in blood parasite burden was found between C57BL/6, B6.TNFα−/−, and B6.LTα−/− mice at the onset of CM symptoms in the two susceptible strains. In addition, studies in bone marrow (BM) chimeric mice showed the persistence of cerebral LTα mRNA after irradiation and engraftment of LTα-deficient BM, indicating that LTα originated from a radiation-resistant cell population

    Abnormal mitochondrial L-arginine transport contributes to the pathogenesis of heart failure and rexoygenation injury

    Get PDF
    Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury
    corecore